Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(μ-succinato- $O, O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}$)bis-[bis(2-amino-1,3-benzothiazole- N^{3})copper(II)]

Lesław Sierońt and Maria Bukowska-Strzyżewska*
Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland
Correspondence e-mail: mbs@ck-sg.p.lodz.pl

Received 27 July 1999
Accepted 12 October 1999
In the title dimeric complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{4}\right]$, which possesses a centre of symmetry, the Cu atoms are enclosed in a 14 -membered ring. They adopt a distorted square-bipyramidal $(4+2)$ coordination. The four closest donor atoms are two N atoms of 2-aminobenzothiazole ligands and two O atoms of the succinate carboxylate groups. They form a square-planar cis arrangement, with an average $\mathrm{Cu}-\mathrm{N}$ distance of 2.003 (3) \AA and $\mathrm{Cu}-\mathrm{O}$ distances of 1.949 (3) and 1.965 (3) \AA. Two longer $\mathrm{Cu}-\mathrm{O}$ bonds of 2.709 (3) and 2.613 (3) A involving the remaining O atoms of the carboxylate groups complete the sixfold coordination of the Cu atoms. The H atoms of each amino group of the 2aminobenzothiazole molecules form intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. A nearly perpendicular intermolecular $\mathrm{C}-\mathrm{H} \cdots C g$ interaction $(C g$ is the centroid of the imidazole ring) is observed. The intramolecular $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 6.384 (2) \AA.

Comment

This work forms part of a continuing study of $\mathrm{Cu}^{\mathrm{II}}$ complexes with benzimidazole and dicarboxylic acids (Tosik \& Bukowska-Strzyżewska, 1992; Tosik et al., 1995a,b; Sieroń \& Bukowska-Strzyżewska, 1998, 1999a), and with carboxylate anions and 2-aminobenzothiazole (Sieroń \& BukowskaStrzyżewska, 1999b), giving a second example of Cu -(2aminobenzothiazole) coordination. In the molecule of the title compound, (I) (Fig. 1), both succinate ions adopt the rare synclinal conformation with respect to the central $\mathrm{C}-\mathrm{C}$ bonds $\left[\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 19^{\mathrm{i}}-\mathrm{C} 18^{\mathrm{i}}=-73.2(5)^{\circ}\right.$; symmetry code: (i) $-x$, $-y, 1-z]$ and take the bridge position between the two Cu atoms, forming a dinuclear centrosymmetrical complex with a $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of 6.384 (2) \AA. A 14-membered ring is formed around a centre of symmetry. The Cu atoms adopt very distorted square-bipyramidal coordinations. The four

[^0]basal bonds are formed by two cis-N atoms of 2-aminobenzothiazole, with an average $\mathrm{Cu}-\mathrm{N}$ distance of 2.003 (3) \AA, and two cis-O atoms of two carboxylate groups, with $\mathrm{Cu}-\mathrm{O}$ distances of 1.949 (3) and 1.965 (3) \AA. The square-planar coordination is visibly deformed in the direction of the tetrahedral coordination. The deviations from the $\mathrm{N} 1 / \mathrm{N} 11 / \mathrm{O} 1 / \mathrm{O} 11$ least-squares plane are $-0.404(1)$ and -0.472 (2) \AA for the trans-situated N 1 and O1 atoms, and 0.444 (2) and 0.433 (2) \AA for the N 11 and O 11 atoms, respectively. The deviation of the Cu atom from this plane is only 0.022 (2) \AA. Two distinctly longer $\mathrm{Cu}-\mathrm{O} 2$ and $\mathrm{Cu}-\mathrm{O} 12$ bonds of 2.709 (3) and 2.613 (3) \AA complete the sixfold coordination. The observed $\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 12$ angle is only 133.2 (1) ${ }^{\circ}$. The dihedral angle between the planes of the two cis-carboxylate groups is $89.9(5)^{\circ}$ and between the average planes of the two 2-aminobenzothiazole ligands is $82.2(1)^{\circ}$. The five and six-membered rings of the 2-aminobenzothiazole molecules are ideally planar and in one molecule ideally coplanar. In the second molecule (containing S1 and N1 atoms), the five and six-membered rings form a dihedral angle of $2.7(2)^{\circ}$.

(I)

The geometry of the intra- and intermolecular hydrogen bonds, and of the intermolecular $\mathrm{C}-\mathrm{H} \cdots C g(\pi$ ring $)$ interaction, where $C g$ is the centroid of the imidazole ring (containing S 1 and N 1), are given in Table 2. The observed $\mathrm{H} \cdots C g$ distance is $2.69 \AA$. The molecular packing is illustrated in Fig. 2. The trans-situated carboxylate ions and 2-aminobenzothiazole molecules are connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bonds, forming six-membered rings. The individual carboxylate ions are differently involved in the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond system. The C8/O1/O2 group forms an intramolecular hydrogen bond through the O 2 atom and an intermolecular hydrogen bond through the O 1 atom. In the $\mathrm{C} 18 / \mathrm{O} 11 / \mathrm{O} 12$ group, only O 12 is involved in hydrogen bonding, forming both inter- and intramolecular $\mathrm{N} 2(12)-\mathrm{H} \cdots \mathrm{O} 12$ hydrogen bonds. This causes distinctly different delocalization of π bonds in both carboxylic acid groups. The bonds C8-O1 [1.284 (5) Å] and $\mathrm{C} 8-\mathrm{O} 2[1.221(4) \AA$ A $]$ are differentiated, while $\mathrm{C} 18-\mathrm{O} 11$ [1.258 (4) \AA] and $\mathrm{C} 18-\mathrm{O} 12$ [1.255 (4) \AA] are practically identical. The different structure of both Cu -coordinated carboxylic acid groups causes the differentiation of both short and long $\mathrm{Cu}-\mathrm{O}$ bonds; $\mathrm{Cu}-\mathrm{O} 1$ [1.949 (3) \AA] is distinctly shorter than $\mathrm{Cu}-\mathrm{O} 11 \quad[1.965(3) \AA]$, and $\mathrm{Cu}-\mathrm{O} 2$ $[2.709(3) \AA$] is longer than $\mathrm{Cu}-\mathrm{O} 12$ [2.613 (3) \AA A $]$. The observed regularity is consistent with the valence bond sum rule (Brown, 1994). The application of the bond valence-bond length correlation allows comparison of the relative impor-

Figure 1
View of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level.
tance of $\mathrm{Cu}-\mathrm{N}$ and different $\mathrm{Cu}-\mathrm{O}$ bonds of the $\mathrm{Cu}^{\mathrm{II}}$ polyhedron and also allows a check of the valence sum rule. According to Brown (1994), the bond length to bond valence correlation represents a measure of the strength of a bond that is independent of the atomic size. The valence sum rule states that the sum of the valences of the bond formed by an atom is equal to the valence (formal oxidation state) of the atom $\left(V_{i}=\right.$ $\left.\Sigma v_{i j}\right)$. The bond valences were computed according to Brown (1992, 1997) and O'Keeffe \& Brese (1991) as $v_{i j}=$ $\exp \left[\left(R_{i j}-d_{i j}\right) / 0.37\right]$, where $R_{i j}$ is the bond-valence parameter (in the formal sense it is the single-bond length between the i and j atoms) and $d_{i j}$ is the observed bond length. $R_{\mathrm{Cu}-\mathrm{O}}$ and $R_{\mathrm{Cu}-\mathrm{N}}$ were taken as 1.679 and $1.713 \AA$ (see Sieroń \& Bukowska-Strzyżewska, 1999a). The computed bond valences

Figure 2
The molecular packing of (I) showing intra- and intermolecular hydrogen bonds, and intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.
of the $\mathrm{Cu}^{\mathrm{II}}$ atom are: $v_{\mathrm{Cu}-\mathrm{O} 1}=0.482, v_{\mathrm{Cu}-\mathrm{O} 2}=0.062, v_{\mathrm{Cu}-\mathrm{O} 11}$ $=0.462, v_{\mathrm{Cu}-\mathrm{O} 12}=0.080, v_{\mathrm{Cu}-\mathrm{N} 1}=0.458, v_{\mathrm{Cu}-\mathrm{N} 2}=0.455 \mathrm{v.u}$. (valence unit). Thus, the computed valence of the $\mathrm{Cu}^{\mathrm{II}}$ atom (V_{Cu}) is 2.00 v.u.

The conformations on the two terminal $\mathrm{C}-\mathrm{C}$ bonds of the succinate ion are different. On the $\mathrm{C} 18-\mathrm{C} 19$ bond, the conformations are synperiplanar and antiperiplanar [torsion angles $\mathrm{O} 11-\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 9^{\mathrm{i}}=5.0(6)^{\circ}$ and $\mathrm{O} 12-\mathrm{C} 18-$ $\left.\mathrm{C} 19-\mathrm{C} 9^{\mathrm{i}}=-175.2(4)^{\circ}\right]$, and on the $\mathrm{C} 8-\mathrm{C} 9$ bond, the conformations are antiperiplanar and synclinal [torsion angles $\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 19^{\mathrm{i}}=151.4(4)^{\circ}$ and $\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 19^{\mathrm{i}}=$ $\left.-32.0(6)^{\circ}\right]$. The structure illustrates the influence of weak hydrogen bonds on the conformation of the aliphatic chain and the differentiation of $\mathrm{Cu}-\mathrm{O}$ bond lengths.

Compound (I) is a second example of bis(μ-dicarboxylate) coordination in a $\mathrm{Cu}^{\mathrm{II}}$ complex with formation of a dimeric molecular structure. A similar coordination was observed in the complex $\operatorname{bis}\left[\left(\mu_{2}\right.\right.$-adipato- $\left.O, O^{\prime}: O^{\prime \prime}, O^{\prime \prime \prime}\right)(N, N$-diethylenediamine)copper(II)] (Pajunen \& Nasakkala, 1977).

Experimental

The title complex was prepared by dissolving equimolar quantities (1 mmol) of 2-aminobenzothiazole, succinic acid and copper(II) chloride dihydrate in water $(80 \mathrm{ml})$. After heating to boiling, the solution was filtered and allowed to cool. After several hours, green crystals of (I) were obtained.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{4}\right]} \\
& M_{r}=960.08 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.239(2) \AA \\
& b=15.643(3) \AA \\
& c=13.859(3) \AA \\
& \beta=102.37(2)^{\circ} \AA^{\circ} \\
& V=1956.5(7) \AA^{3} \\
& Z=2
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$1.949(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.317(5)$
$\mathrm{Cu}-\mathrm{O} 2$	$2.709(3)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.403(5)$
$\mathrm{Cu}-\mathrm{O} 11$	$1.965(3)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.327(5)$
$\mathrm{Cu}-\mathrm{O} 12$	$2.613(3)$	$\mathrm{O} 11-\mathrm{C} 18$	$1.258(4)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.002(3)$	$\mathrm{O} 12-\mathrm{C} 18$	$1.255(4)$
$\mathrm{Cu}-\mathrm{N} 11$	$2.004(3)$	$\mathrm{S} 11-\mathrm{C} 11$	$1.751(4)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.284(5)$	$\mathrm{S} 11-\mathrm{C} 12$	$1.740(5)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.221(4)$	$\mathrm{N} 11-\mathrm{C} 11$	$1.310(5)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.751(4)$	$\mathrm{N} 11-\mathrm{C} 17$	$1.400(5)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.750(4)$	$\mathrm{N} 12-\mathrm{C} 11$	$1.331(6)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 2$	$53.45(10)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$124.7(4)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 11$	$91.98(11)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$115.3(3)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 12$	$106.69(11)$	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	$120.0(3)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$152.89(12)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	$128.2(4)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 11$	$87.75(12)$	$\mathrm{C} 7-\mathrm{C} 2-\mathrm{S} 1$	$110.1(3)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 11$	$81.17(10)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$	$126.3(4)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{O} 12$	$133.15(9)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{N} 1$	$114.5(3)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 1$	$102.25(11)$	$\mathrm{O} 1-\mathrm{C} 8-\mathrm{O} 2$	$123.0(4)$
$\mathrm{O} 2-\mathrm{Cu}-\mathrm{N} 11$	$117.82(11)$	$\mathrm{C} 11-\mathrm{S} 11-\mathrm{C} 12$	$88.9(2)$
$\mathrm{O} 11-\mathrm{Cu}-\mathrm{O} 12$	$55.36(9)$	$\mathrm{C} 11-\mathrm{N} 11-\mathrm{C} 17$	$111.8(3)$
$\mathrm{O} 11-\mathrm{Cu}-\mathrm{N} 1$	$95.97(12)$	$\mathrm{N} 11-\mathrm{C} 11-\mathrm{N} 12$	$124.9(4)$
$\mathrm{O} 11-\mathrm{Cu}-\mathrm{N} 11$	$154.90(12)$	$\mathrm{N} 11-\mathrm{C} 11-\mathrm{S} 11$	$115.5(3)$
$\mathrm{O} 12-\mathrm{Cu}-\mathrm{N} 1$	$99.11(11)$	$\mathrm{N} 12-\mathrm{C} 11-\mathrm{S} 11$	$119.6(3)$
$\mathrm{O} 12-\mathrm{Cu}-\mathrm{N} 11$	$100.77(11)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{S} 11$	$129.4(4)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 11$	$95.60(13)$	$\mathrm{C} 17-\mathrm{C} 12-\mathrm{S} 11$	$110.6(3)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	$89.04(19)$	$\mathrm{N} 11-\mathrm{C} 17-\mathrm{C} 12$	$113.2(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$111.1(3)$	$\mathrm{O} 11-\mathrm{C} 18-\mathrm{O} 12$	$122.4(3)$

Data collection

Siemens $P 3$ diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.740, T_{\text {max }}=0.848$
3561 measured reflections
3414 independent reflections
2516 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.035 \\
& \theta_{\max }=25^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=0 \rightarrow 18 \\
& l=0 \rightarrow 16 \\
& 2 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0290 P)^{2}\right. \\
& +2.5110 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.334 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.277 \mathrm{e}^{-3}
\end{aligned}
$$

Refined $\mathrm{C}-\mathrm{H}$ distances are in the range 0.82 (6)-0.98 (4) \AA.
Data collection: $P 3$ software; cell refinement: $P 3$ software; data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s)

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 21 \cdots \mathrm{O} 2$	$0.84(5)$	$2.01(5)$	$2.852(5)$	$176(5)$
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{O} 2^{\text {i }}$	$0.81(4)$	$2.12(4)$	$2.890(5)$	$159(5)$
$\mathrm{N} 12-\mathrm{H} 121 \cdots \mathrm{O} 12$	$0.84(5)$	$2.09(5)$	$2.894(5)$	$161(5)$
$\mathrm{N} 12-\mathrm{H} 122 \cdots \mathrm{O} \mathrm{O}^{\text {iii }}$	$0.82(5)$	$2.09(5)$	$2.859(5)$	$157(5)$
$\mathrm{C} 14-\mathrm{H} 14 \cdots C g^{\text {iii }}$	$0.91(5)$	2.69	3.563	162

Symmetry codes: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x,-y, 1-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$.
used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: $X P$ in $S H E L X T L / P C$; software used to prepare material for publication: SHELXL97.

This work was supported by the Polish State Committee for Scientific Research (KBN) (grant No. 3 T09A 142 15).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1341). Services for accessing these data are described at the back of the journal.

References

Brown, I. D. (1992). Acta Cryst. B48, 553-572.
Brown, I. D. (1994). Bond-Length-Bond-Valence Relationships in Inorganic Solids, in Structure Correlation, Part III, edited by H.-B. Bürgi \& J. D. Dunitz, pp. 405-429. Weinheim/New York: VCH Publishers.
Brown I. D. (1997). Acta Cryst. B53, 381-393.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
O'Keeffe, M. \& Brese, N. E. (1991). J. Am. Chem. Soc. 113, 3226-3229.
Pajunen, A. \& Nasakkala, E. (1977). Finn. Chem. Lett. pp. 104-109.
Sheldrick, G. M. (1990). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sieroń, L. \& Bukowska-Strzyżewska, M. (1998). Acta Cryst. C54, 14311435.

Sieroń, L. \& Bukowska-Strzyżewska, M. (1999a). Acta Cryst. C55, 12301234.

Sieroń, L. \& Bukowska-Strzyżewska, M. (1999b). Acta Cryst. C55, 167169.

Tosik, A. \& Bukowska-Strzyżewska, M. (1992). J. Crystallogr. Spectrosc. Res. 22, 225-229.
Tosik, A., Sieroń, L. \& Bukowska-Strzyżewska, M. (1995a). Acta Cryst. C51, 1985-1987.
Tosik, A., Sieroń, L. \& Bukowska-Strzyżewska, M. (1995b). Acta Cryst. C51, 1987-1989.

[^0]: \dagger A holder of the Foundation for Polish Science (FNP) grant.

